1990年4月24日
アメリカでスペースシャトル「ディスカバリー」打上げ。軌道上でハッブル宇宙望遠鏡を放出。
Hubble Space Telescope:HST
1990年にスペースシャトル・ディスカバリー号によって幾度の打ち上げ延期を乗り越え、満を持して打ち上げられた。しかし打ち上げ直後の調整で天体の光を集める鏡の端が設計より0.002mm平たく歪んでいることが発覚。この誤差により分解能は予定の5%になってしまった(ただし5%でも地上の望遠鏡より遥かに高い分解能を有していた)。
この歪みは、主鏡を製造したパーキンエルマー社(現レイセオン・ダンバリー社)の工場において鏡面の歪みを検出するヌル補正装置が正しく取り付けられていないことが原因だった。本来小型の鏡の歪みを検出する用途に使われていたこの装置を、2.4mの大型鏡の補正に用いるために無理に取り付けたことが歪みを生む結果につながったのである。
この問題を修正するために、焦点に入ってくる15%の光を最大限に利用するソフトウェアが開発された。これで性能は58%まで回復。これ以上の修復は直接宇宙へ行き、ハッブルを修理するしかなかった。
元々ハッブルは運用期間15年(当初の予定)の間に数回スペースシャトルから修理などを受ける予定だったので、NASAはこの修理に鏡の誤差を修正する光学系の装置を入れる事を急遽決定。この修理に伴う船外活動のため、宇宙飛行士たちは一年以上、延べ400時間に及ぶ訓練を受けることとなる。この訓練のおかげで、この大修理は無事成功。結果、ハッブルは当初の予定を遥かに超える性能を手にし、天文学史に残る数々の貴重な天体写真を捉えている。また、非常に美しい芸術的な天体写真も多数公開されている。なお、これらの写真は必ずしも本物の色ではないことがある。肉眼では見えない領域の光(赤外線、紫外線など)を撮影した場合は、擬似カラーと呼ばれ、わかりやすいように波長ごとに色付けするためである。
歴史
1990年4月24日:スペースシャトル ディスカバリー号によって打ち上げられる (STS-31) 。
1993年12月:初のサービスミッション (SM1) (STS-61) 。球面収差修正用の光学系であるCOSTAR(Corrective Optics Space Telescope Axial Replacement)を設置。これにより鮮明な画像が得られるようになった。WF/PCの代わりに、WFPC2(Wide Field Planetary Camera 2)を設置。また、太陽電池パネルの交換も行なった。
1997年2月:2度目のサービスミッション (SM2) (STS-82) 。FOS(Faint Object Spectrograph)の代わりにNICMOS(近赤外カメラ及び多天体分光器:Near Infrared Camera and Multi-Object Spectrometer)や、GHRS(Goddard High Resolution Spectrometer)の代わりにSTIS(宇宙望遠鏡撮像分光器:Space Telescope Imaging Spectrograph)の設置などを行った。
1999年11月25日:6台ある姿勢制御用ジャイロスコープのうち4台目が故障し、観測不能に陥る。
1999年12月:3度目のサービスミッション (SM3A) (STS-103) 。ジャイロスコープ6台全てを交換、主コンピュータの交換など。
2002年3月:4度目のサービスミッション (SM3B) (STS-109) 。新型メインカメラACS (掃天用高性能カメラ:Advanced Camera for Surveys) の取り付け(FOC(Faint Object Camera)と交換)、太陽電池パネルを新型のものに交換、NICMOSの冷却装置の設置など。
2004年1月16日:アメリカ航空宇宙局 (NASA) は今後、ハッブル宇宙望遠鏡の修理を行なわないと発表。予定されていた5度目のサービスミッション (SM4) は中止された。
2006年6月25日:新型メインカメラACSが故障。同年6月30日に復旧。
2006年9月23日:ACSが再度故障。同年10月6日に復旧。
2006年10月31日:方針を転換し、5度目のサービスミッションを行い、2013年まで利用を続けるための修理を行うことがNASAより発表された。
2007年1月23日:ACSが再度故障。同年2月19日になって一部機能の復旧に成功したものの、主要機能の復旧は絶望的である。WFPC2などの旧型機器は動作し続けているため、機能は劣るものの代用が可能。
2009年5月11日:最後のサービスミッション (SM4) (STS-125)。WFPC2をWFC3(Wide Field Camera 3)へ交換、故障したACSとSTISの修理、COS(Cosmic Origins Spectrograph)の設置、ジャイロとバッテリーの交換など大幅な修理を行う。ハッブルは「今までで最高の性能」(NASA)になり、少なくとも2014年まで寿命が延びる。ミッションは無事完了し、4ヶ月間のテスト期間を経て活動を再開する。
このSTS-125ミッションで地上に回収されたWFPC2とCOSTARは、2014年4月からスミソニアン博物館で展示を始めた。[6]
2009年7月24日:本格稼動前であるが、木星への天体衝突跡が発見された為に新しく取り付けられたWFC3で衝突跡を撮影・SM4終了後の画像を初公開した。
アメリカでスペースシャトル「ディスカバリー」打上げ。軌道上でハッブル宇宙望遠鏡を放出。
ハッブル宇宙望遠鏡
基本情報 | |
---|---|
NSSDC ID | 1990-037B |
所属 | NASA/ESA/STScI |
打上げ日時 | 1990年4月24日午前8:33:51 EDT |
打上げ機 | ディスカバリー(STS-31) |
ミッション期間 | 25年11か月と27日経過 |
落下時期 | 2013–2021年予定[1][2] |
質量 | 11,110 kg (24,500 lb) |
軌道 | 円に近い地球低軌道 |
軌道高度 | 559 km (347 mi) |
軌道周期 | 96–97分 |
周回速度 | 7,500 m/s (25,000 ft/s) |
重力による加速 | 8.169 m/s2 (26.80 ft/s2) |
所在地 | 地球低軌道 |
形式 | リッチー・クレティエン式反射望遠鏡 |
観測波長 | 可視光、紫外、近赤外 |
口径 | 2.4 m (7 ft 10 in) |
開口面積 | 4.5 m² (48 ft²)[3] |
焦点距離 | 57.6 m (189 ft) |
観測装置 | |
NICMOS | 赤外線カメラ/分光計(窒素冷媒がなくなり一時停止したが2002年に冷却機が付けられ観測を再開) |
ACS | 掃天用高性能カメラ (部分的に失敗) |
WFC3 | 広域カメラ |
COS | 宇宙起源分光器 |
STIS | 画像分光器 |
FGS | 3つのファイン・ガイダンス・センサー |
公式サイト | hubble.nasa.gov hubblesite.org www.spacetelescope.org |
地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は宇宙の膨張を発見した天文学者・エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。
ハッブル宇宙望遠鏡が行う観測のほとんどは、目で見える光の波長を使う。そのため、望遠鏡を地球の大気の上に置く最も大きな利点は、シーイングによる歪みを受けないことである。また、観測する天体を細かなところでまで明らかにすると同時に、光を狭い範囲へ集めることで暗い天体まで観測することができる。
望遠鏡の大きさは、バスほどもある。また、これまでにスペースシャトルが何度かこの望遠鏡を訪れ、宇宙飛行士が観測装置を補修したり、新しいカメラや分光器を取り付けるなどしてきた。
概要
ハッブル宇宙望遠鏡は、地球の周回軌道にのせられた望遠鏡の中では、一番成功をおさめたものだろうと言われている。ハッブル宇宙望遠鏡が行う観測のほとんどは、目で見える光の波長を使う。そのため、望遠鏡を地球の大気の上に置く最も大きな利点は、シーイングによる歪みを受けないことである。また、観測する天体を細かなところでまで明らかにすると同時に、光を狭い範囲へ集めることで暗い天体まで観測することができる。
望遠鏡の大きさは、バスほどもある。また、これまでにスペースシャトルが何度かこの望遠鏡を訪れ、宇宙飛行士が観測装置を補修したり、新しいカメラや分光器を取り付けるなどしてきた。
成果
- シューメーカー・レヴィ第9彗星が木星に衝突する様子を克明に捉えた(1994年)。
- 太陽系外の恒星の周りに惑星が存在する証拠を初めて得た。
- 銀河系を取巻くダークマターの存在を明らかにした。
- 宇宙の膨張速度が加速しているという現在の宇宙モデルはハッブル宇宙望遠鏡の観測結果によって得られた。
- 多くの銀河の中心部にブラックホールがあるという理論は、ハッブル宇宙望遠鏡の多くの観測結果によって裏付けられている。
- 1995年12月18日~28日、おおぐま座付近の肉眼でほとんど星のない領域について十日間に亘り観測を行い、「ハッブル・ディープ・フィールド」と呼ばれる千五百~二千個にも及ぶ遠方の銀河を撮影した。これに続き、南天のきょしちょう座付近において「南天のハッブル・ディープ・フィールド」 (Hubble Deep Field - South) 観測を行った。 双方の観測結果は非常に似かよっており、宇宙は大きなスケールに渉り均一であること、地球は宇宙の中で典型的な場所を占めていることを明らかにした。
- 2011年12月、科学誌に投稿された論文が21年間で10,000件に到達[5]。
1990年にスペースシャトル・ディスカバリー号によって幾度の打ち上げ延期を乗り越え、満を持して打ち上げられた。しかし打ち上げ直後の調整で天体の光を集める鏡の端が設計より0.002mm平たく歪んでいることが発覚。この誤差により分解能は予定の5%になってしまった(ただし5%でも地上の望遠鏡より遥かに高い分解能を有していた)。
この歪みは、主鏡を製造したパーキンエルマー社(現レイセオン・ダンバリー社)の工場において鏡面の歪みを検出するヌル補正装置が正しく取り付けられていないことが原因だった。本来小型の鏡の歪みを検出する用途に使われていたこの装置を、2.4mの大型鏡の補正に用いるために無理に取り付けたことが歪みを生む結果につながったのである。
この問題を修正するために、焦点に入ってくる15%の光を最大限に利用するソフトウェアが開発された。これで性能は58%まで回復。これ以上の修復は直接宇宙へ行き、ハッブルを修理するしかなかった。
元々ハッブルは運用期間15年(当初の予定)の間に数回スペースシャトルから修理などを受ける予定だったので、NASAはこの修理に鏡の誤差を修正する光学系の装置を入れる事を急遽決定。この修理に伴う船外活動のため、宇宙飛行士たちは一年以上、延べ400時間に及ぶ訓練を受けることとなる。この訓練のおかげで、この大修理は無事成功。結果、ハッブルは当初の予定を遥かに超える性能を手にし、天文学史に残る数々の貴重な天体写真を捉えている。また、非常に美しい芸術的な天体写真も多数公開されている。なお、これらの写真は必ずしも本物の色ではないことがある。肉眼では見えない領域の光(赤外線、紫外線など)を撮影した場合は、擬似カラーと呼ばれ、わかりやすいように波長ごとに色付けするためである。
1990年4月24日:スペースシャトル ディスカバリー号によって打ち上げられる (STS-31) 。
1993年12月:初のサービスミッション (SM1) (STS-61) 。球面収差修正用の光学系であるCOSTAR(Corrective Optics Space Telescope Axial Replacement)を設置。これにより鮮明な画像が得られるようになった。WF/PCの代わりに、WFPC2(Wide Field Planetary Camera 2)を設置。また、太陽電池パネルの交換も行なった。
1997年2月:2度目のサービスミッション (SM2) (STS-82) 。FOS(Faint Object Spectrograph)の代わりにNICMOS(近赤外カメラ及び多天体分光器:Near Infrared Camera and Multi-Object Spectrometer)や、GHRS(Goddard High Resolution Spectrometer)の代わりにSTIS(宇宙望遠鏡撮像分光器:Space Telescope Imaging Spectrograph)の設置などを行った。
1999年11月25日:6台ある姿勢制御用ジャイロスコープのうち4台目が故障し、観測不能に陥る。
1999年12月:3度目のサービスミッション (SM3A) (STS-103) 。ジャイロスコープ6台全てを交換、主コンピュータの交換など。
2002年3月:4度目のサービスミッション (SM3B) (STS-109) 。新型メインカメラACS (掃天用高性能カメラ:Advanced Camera for Surveys) の取り付け(FOC(Faint Object Camera)と交換)、太陽電池パネルを新型のものに交換、NICMOSの冷却装置の設置など。
2004年1月16日:アメリカ航空宇宙局 (NASA) は今後、ハッブル宇宙望遠鏡の修理を行なわないと発表。予定されていた5度目のサービスミッション (SM4) は中止された。
2006年6月25日:新型メインカメラACSが故障。同年6月30日に復旧。
2006年9月23日:ACSが再度故障。同年10月6日に復旧。
2006年10月31日:方針を転換し、5度目のサービスミッションを行い、2013年まで利用を続けるための修理を行うことがNASAより発表された。
2007年1月23日:ACSが再度故障。同年2月19日になって一部機能の復旧に成功したものの、主要機能の復旧は絶望的である。WFPC2などの旧型機器は動作し続けているため、機能は劣るものの代用が可能。
2009年5月11日:最後のサービスミッション (SM4) (STS-125)。WFPC2をWFC3(Wide Field Camera 3)へ交換、故障したACSとSTISの修理、COS(Cosmic Origins Spectrograph)の設置、ジャイロとバッテリーの交換など大幅な修理を行う。ハッブルは「今までで最高の性能」(NASA)になり、少なくとも2014年まで寿命が延びる。ミッションは無事完了し、4ヶ月間のテスト期間を経て活動を再開する。
このSTS-125ミッションで地上に回収されたWFPC2とCOSTARは、2014年4月からスミソニアン博物館で展示を始めた。[6]
2009年7月24日:本格稼動前であるが、木星への天体衝突跡が発見された為に新しく取り付けられたWFC3で衝突跡を撮影・SM4終了後の画像を初公開した。
ギャラリー
エドウィン・パウエル・ハッブル Edwin Powell Hubble | |
---|---|
人物情報 | |
生誕 | 1889年11月20日 アメリカ合衆国 ミズーリ州マーシュフィールド |
死没 | 1953年9月28日(満63歳没) アメリカ合衆国 カリフォルニア州サンマリノ |
出身校 | シカゴ大学 オックスフォード大学 |
学問 | |
研究分野 | 銀河天文学 宇宙論 |
研究機関 | シカゴ大学ヤーキス天文台 カーネギー研究所ウィルソン山天文台 |
主な業績 | 系外銀河の存在の実証、分類 ハッブルの法則の発見 |
主な受賞歴 | ブルース・メダル(1938年) 王立天文学会ゴールドメダル(1940年) メリット勲章(1946年) |
プロジェクト:人物伝 |